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Abstract
We investigate an alternative approach to the connection between plasmons
and the ground-state wavefunction of many-electron systems, starting with a
classical plasmon Hamiltonian. We obtain a prescription for the part of the
wavefunction which determines the long-ranged electron–electron correlations;
we then show how this prescription can be used to construct improved trial
wavefunctions for use in quantum Monte Carlo simulations.

Using the quasi-2D electron gas as a test system, we construct a trial
wavefunction of the Slater–Jastrow form, combining mean-field single-electron
orbitals with short-ranged and plasmon-derived long-ranged correlations.
Variational quantum Monte Carlo calculations show that the new wavefunction
reduces the expectation value of the energy, but the short-ranged correlations
are more important than the plasmon-derived ones. Finally, we present a
computationally efficient Jastrow factor, which we recommend for future
simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has long been known that there is a connection between the collective charge oscillations
known as plasmons and the ground-state wavefunction of many-electron systems [1]. In this
paper, we aim to clarify this connection.

The motivation for this work is the need for good trial wavefunctions in our quantum
Monte Carlo (QMC) simulations. The term ‘quantum Monte Carlo’ groups together many
different techniques that involve using Monte Carlo methods to solve problems in quantum
mechanics [2]. QMC is commonly used to investigate the ground-state of many-electron
systems; in this area, the two most popular versions of QMC are variational and fixed-node
diffusion Monte Carlo (VMC and DMC) [3]. Both of these methods rely on having a good
estimate of the ground-state wavefunction in advance.
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Conventionally, the many-electron trial wavefunction takes the form

�T(X) = eJ (X)D(X) (1)

where X represents all the electron spins and positions, D is a determinant made up of single-
electron orbitals, and eJ is a totally symmetric function called the Jastrow factor. The quality of
the single-electron orbitals sets a hard limit on the accuracy of VMC and DMC simulations. The
Jastrow factor cannot alter the position of the nodes, and therefore cannot improve the fixed-
node DMC energy; however, a good Jastrow factor significantly improves both the ground-state
energy in VMC and the efficiency of fixed-node DMC simulations. In certain circumstances,
a poor-quality Jastrow factor can make DMC simulations impossible, because the consequent
population fluctuations become unmanageable. It is thus very important to obtain as much
information as possible about the correct form of the wavefunction by analytical means. One
way to obtain a better Jastrow factor is through a consideration of plasmons [4].

In a system with a homogeneous electron density, plasmons are well defined for
wavelengths above some critical value; for wavelengths below this value, the plasmons are
able to decay to form electron–hole pairs. The existence of long-lived plasmons suggests that
we should be able to separate the full many-electron Hamiltonian into a plasmon part and a
screened part. If we ignore the coupling between the two, we can approximate the ground-state
wavefunction as a product of a plasmon term and a screened term. It turns out that the plasmon
term naturally provides a significant part of the Jastrow factor. Several authors have studied
this relationship for homogeneous [1] and inhomogeneous [5] systems.

Here, we present a prescription for obtaining a Jastrow factor for general inhomogeneous
systems that is consistent with the previous work, although based on a more ‘physical’
approach; in addition, we show how a knowledge of the classical plasmon normal modes allows
an alternative method for writing down J .

We then apply this method to our test system—the quasi-2D electron gas. In doing so,
we illustrate some of the technical challenges involved in constructing a practical Jastrow
factor, and introduce a new term to deal with short-range correlations. The results of our VMC
simulations demonstrate the effect of the new Jastrow factor on the electron density and on the
energy expectation value. We find that using the full plasmon Jastrow factor reduces the energy
expectation value, although not significantly more than using only the short-ranged term.

The plasmon Jastrow exponent includes terms which correlate the motion of pairs of
electrons (usually denoted u), as well as single-electron terms that act to modify the electron
density (denoted χ ). The relationship between the two is of the form proposed by Malatesta
et al [6], namely

χ(r) =
∫

�

n̄(r′)u(r, r′) d3r ′ (2)

where n̄ is the electron density. We use the same relationship when constructing the part of the
Jastrow factor that deals with short-range correlations (which is not related to plasmons); we
choose a form for u, and then calculate χ using the formula (2). The resulting Jastrow factor
performs very well, and is computationally inexpensive. This approach has the advantage of
reducing the number of parameters in the Jastrow factor, since χ is completely determined
once u has been chosen. Of course, additional terms can subsequently be included in χ if
required. It is normal to parametrize the Jastrow factor in a flexible way, and then to optimize
the parameters; we find that calculating χ from u can significantly improve the efficiency of
this procedure.
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2. The plasmon Hamiltonian

Our first task is to write down a classical Hamiltonian for our system, which consists of a gas
of electrons moving in some time-independent background potential φb. The hydrodynamic
kinetic energy of this gas is

T = 1
2

∫
�

n(r, t)me |v(r, t)|2 d3r (3)

where n is the electron number density and v is the hydrodynamical velocity. We work in the
electrostatic approximation, neglecting magnetic interactions and relativistic effects; we can
therefore write the potential energy as

V =
∫

�

en(r, t)

[
−φb(r) + 1

2

∫
�

en(r′, t)

4πε0|r − r′| d3r ′
]

d3r. (4)

The potential energy is minimized when the total charge density of the system is uniformly zero.
We can use this condition, or simply take the variation of the potential energy with respect to n
to show that the required electron density is n̄, where

φb(r) =
∫

�

en̄(r′)
4πε0|r − r′| d3r ′. (5)

The kinetic energy can be simultaneously minimized by requiring that v = 0. Of course, n and
v are not independent, but when n = n̄ there is no net force on the electron gas and v = 0 is an
acceptable solution.

A plasmon is a small oscillation about the ground-state density. We therefore write

n(r, t) = n̄(r) − ρ(r, t)

e
(6)

where ρ is the change in the charge density associated with the plasmon; this is assumed to be
small, along with all other time-dependent quantities, including v.

We can write our Hamiltonian as the sum of kinetic and potential energies, expanded
around n = n̄:

H = T + V = 1

2

∫
�

n̄(r)me|v(r, t)|2 d3r ′ + 1

2

∫
�

∫
�

ρ(r, t)ρ(r′, t)

4πε0|r − r′| d3r ′ d3r

− 1

2

∫
�

ρ(r, t)me|v(r, t)|2
e

d3r
︸ ︷︷ ︸

higher−order

− 1

2

∫
�

∫
�

e2n̄(r)n̄(r′)
4πε0|r − r′| d3r ′ d3r

︸ ︷︷ ︸
constant

. (7)

Omitting the constant and third-order terms gives us the desired plasmon Hamiltonian:

H = 1

2

∫
�

ε0ω
2
p(r)|∇ f (r, t)|2 d3r ′ + 1

2

∫
�

∫
�

ρ(r, t)ρ(r′, t)

4πε0|r − r′| d3r ′ d3r. (8)

Two new variables have been introduced; the first is the position-dependent plasma frequency

ωp(r) =
√

e2n̄(r)
meε0

. (9)

In a homogeneous gas of density n̄, bulk plasmon oscillations are supported at this frequency
(in the simple classical model).

Secondly, we have chosen to write the velocity as the gradient of a scalar field:

v(r, t) = e

me
∇ f (r, t). (10)
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This is permitted because the flow is irrotational; the small perturbations to the stationary
ground state are caused by the Coulomb force, which cannot induce rotation. We must now
determine the relationship between v and ρ. The force on any infinitesimal volume element of
our fluid comes from the electrostatic interaction of that element with the surroundings; since
our fluid is made up of electrons, we have

mev̇ = e∇φ, (11)

where the time-dependent electrostatic potential is

φ(r, t) =
∫

�

ρ(r′, t)

4πε0|r − r′| d3r ′. (12)

This is the total potential: the contributions from the background and the equilibrium electron
density do not appear because they cancel exactly. We have ignored the pressure in the fluid.

The Hamiltonian (8) is written in terms of the fields f and ρ, which we will show below
to be mutually conjugate. The corresponding canonical equations are

ḟ = δH

δρ
= φ (13)

ρ̇ = −δH

δ f
= −∇ · J. (14)

The first of these ensures that (11) is satisfied; the second is the equation of continuity, with the
current density

J = −n̄ev. (15)

We have used the definitions (9), (10), and (12).
Our approach began with the formulation of a Hamiltonian. It is more conventional to start

with a Lagrangian, expressed in terms of the derivatives of a single field; the conjugate field
can then be defined, and a Legendre transformation leads to the Hamiltonian. Our physically
motivated Hamiltonian can be derived from the following Lagrangian1:

L = 1
2ε0

∫
�

[
−ω2

p(r) |∇ f (r, t)|2 + ∣∣∇ ḟ (r, t)
∣∣2] d3r. (16)

We can now confirm that the charge density and the velocity potential are conjugate variables:

δL

δ ḟ
= −ε0∇2 ḟ = ρ. (17)

The Legendre transformation

H =
∫

�

ρ(r, t) ḟ (r, t) d3r − L (18)

then gives the Hamiltonian described in (8).
Quantization proceeds by letting f and ρ become operators, subject to the commutation

relation [
f̂ (r), ρ̂(r′)

]
= ih̄δ(r − r′). (19)

1 The reason for writing the Lagrangian in terms of f and ḟ , and hence making f into the ‘position’ variable (rather
than ρ, which would usually be the natural choice), is that the kinetic energy term cannot easily be expressed in terms
of ρ̇.
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3. Normal modes

To find the ground-state wavefunction, we can write the plasmon Hamiltonian using the normal
mode amplitudes as variables. It will then be reduced to a form corresponding to a set of
independent oscillators, and we will be able to write down the ground-state wavefunction.

The equation of motion for the electrostatic potential is obtained by combining the
canonical equations (13) and (14) with the definitions (9), (10), (12) and (15):

−∇2φ̈ = ∇ ·
(
ω2

p∇φ
)

. (20)

The velocity potential satisfies the same equation; working with φ rather than f is therefore
a matter of choice. On the other hand, we do not work with the charge density because the
relevant equation of motion is less tractable.

The defining characteristic of a normal mode is harmonic time dependence; the normal
modes of the electrostatic potential therefore satisfy the equation

ω2
i ∇2φi = ∇ ·

(
ω2

p∇φi

)
. (21)

Assuming appropriate boundary conditions, the solutions of this equation are orthogonal, in the
sense that ∫

�

∇φi · ∇φ j d3r = δi j, (22)

where we have chosen the normalization. The modes are also orthogonal when weighted with
the local plasma frequency:∫

�

ω2
p∇φi · ∇φ j d3r = ω2

i δi j . (23)

These properties follow from (20), and the use of physical boundary conditions.
The canonical transformation to the normal coordinates {αi } and {βi} can be achieved with

the generating function [7]

� =
∑

i

βi

∫
�

∇φi · ∇ f d3r. (24)

We then have

αi = ∂�

∂βi
=
∫

�

∇φi · ∇ f d3r (25)

ρ = δ�

δ f
= −

∑
i

βi∇2φi . (26)

Equation (25) shows that αi is the amplitude of the i th normal mode; the use of the generating
function ensures that αi and βi are conjugate variables.

We can invert these expressions by using the orthonormality condition (22) to give

∇ f =
∑

i

αi∇φi (27)

βi =
∫

�

φiρ d3r. (28)

The quantum mechanical operators representing the normal mode amplitudes obey the
commutation relation[

α̂i , β̂ j

]
= ih̄δi j, (29)
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as can be verified by substitution. If the normal modes are chosen to be real, the operators {α̂i }
and {β̂i} are Hermitian.

Using the normal coordinates, the Hamiltonian operator becomes

Ĥ = 1

2

∑
i

(
1

ε0
β̂2

i + ε0ω
2
i α̂

2
i

)
. (30)

Given this simple form, we can immediately write down the ground-state wavefunction in the
βi -representation:

�pl({βi}) = exp

(
− 1

2ε0h̄

∑
i

1

ωi
β2

i

)
, (31)

or, using (6) and (28), we can write it in terms of the electron density:

�pl[n] = exp

{
− e2

2ε0h̄

∑
i

1

ωi

[∫
�

φi (n − n̄) d3r

]2
}

. (32)

We would like to express the wavefunction in terms of the electron coordinates {ri }. To
this end, we will use the definition of the electron density

n(r) =
∑

i

δ (r − ri ) (33)

to substitute for n. However, we must be careful. We have not derived the full ground-
state wavefunction for a many-electron system here; we have only calculated that part
which determines long-range correlations and gives rise to long-wavelength collective charge
oscillations. Thus, we may write

�pl ({ri}) = exp

[
− 1

2

∑
i, j

upl(ri , r j ) +
∑

i

χpl(ri )

]
(34)

where

χpl(r) = e2

ε0h̄

∑
i

1

ωi
φi (r)

∫
�

φi(r′)n̄(r′) d3r ′ (35)

and

upl(r, r′) = e2

ε0h̄

∑
i

1

ωi
φi(r)φi (r′), (36)

as long as we understand that we are dealing with only part of the full many-electron
wavefunction.

The two-body term, upl, correlates the motion of pairs of electrons. In a homogeneous
system, where the normal modes are plane waves oscillating at the plasma frequency, it
becomes

uhom
pl (r, r′) = e2

4πε0h̄ωp|r − r′| (37)

as expected [1].
The plasmon theory also generates a one-body term, χpl. This can be thought of as ‘density

restoring’: it ensures that the electron density does not deviate much from n̄, as it would if only
the two-body term were present.
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4. Constructing the many-electron wavefunction

Plasmons are long-wavelength oscillations. In a homogeneous system with electron density
( 4

3πr 3
s )−1, plasmons with a wavevector greater than

kc ≈ 1√
rs

(38)

are no longer well defined: they are able to decay to form electron–hole pairs [8, 9]. Although
the situation is less clear when the system is inhomogeneous, there will still be a cut-off; this
means that the expressions derived above will only provide the long-range correlations between
electrons.

The full electronic Hamiltonian contains the kinetic energy and the Coulomb interaction
terms; the plasmon Hamiltonian contains only the long-wavelength components of the
Coulomb interaction. In effect, we have separated the Schrödinger equation, based on the
physical observation that plasmons exist, and have long lifetimes:

Ĥ ≈ Ĥpl + Ĥred. (39)

We neglect the weak coupling between the two terms. The remaining non-plasmonic part of the
Hamiltonian, Ĥred, includes the usual short-wavelength interactions, but the long-wavelength
interactions are screened: only a mean-field picture remains, since the fluctuations around this
mean field make up the plasmons.

The full ground-state wavefunction can therefore be approximated by a product of two
terms:

�0 ≈ �pl�red, (40)

where �red is the ground state of the reduced Hamiltonian operator (with the long-wavelength
interactions treated in a mean-field way).

We can compare this approximation with the Slater–Jastrow wavefunction conventionally
used in QMC simulations (1). The plasmon ground-state wavefunction �pl is exponential in
form, and so makes up part of the Jastrow factor. If we combine a Slater determinant composed
of single-electron orbitals obtained from a mean-field (density-functional or Hartree–Fock
theory) calculation with a Jastrow factor which includes only short-range correlations, then
we have an approximation to �red. We still need to determine the form of the short-range
correlations, but for this we can appeal to Kato’s cusp conditions [10].

Our approximation to the ground-state wavefunction is therefore of the conventional
Slater–Jastrow type, with the following Jastrow exponent:

J = − 1
2

∑
i, j

[
upl(ri , r j ) + ucusp(xi , x j)

]+∑
i

[
χpl(ri ) + χcusp(ri)

]
. (41)

The function ucusp should give the correct gradient discontinuity when the two relevant electrons
lie on top of one another, and should tend to a constant when they are far apart (so that the
plasmon term then dominates). The separation distance which marks the crossover between
these two regimes should be of the order of k−1

c . We choose the function

ucusp(xi , x j ) =
(

mee2

4πε0h̄2

)
1

2kc

(
1

1 + δσi σ j

)
exp

(
−kcri j − r 2

i j

L2
c

)
. (42)

The Gaussian damping term has been included to avoid creating unwanted cusps in the
wavefunction for periodic systems; the parameter Lc is set to ensure that ucusp is very small
when ri j approaches the size of the simulation cell.
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The introduction of ucusp will change the electron density of an inhomogeneous system.
Generally, electrons will be pushed further apart, causing regions of high density to spread out:
the inhomogeneity of the system is reduced. Fahy and co-workers [11] were the first to point
out in the context of QMC simulations that adding a homogeneous2 two-body term causes the
electron density to become more uniform. We have seen that the plasmon theory generates
a one-body term, χpl; this compensates for the change in the electron density which would
otherwise be brought about by upl. A similar compensatory term is required to go with ucusp;
we have therefore included χcusp.

A comparison of the definitions of upl (36) and χpl (35) shows that they are related as
follows:

χpl(r) =
∫

�

n̄(r′)upl(r, r′) d3r ′. (43)

A relationship of this form between the one- and two-body terms in the Jastrow factor was
postulated by Malatesta et al [6], based on a plausibility argument. We will apply the same
principle in this work to calculate the density-correcting term corresponding to ucusp; in other
words, we set

χcusp(r) =
∫

�

n̄(r′)ucusp(r, r′) d3r ′. (44)

In the following sections, we will test the effectiveness of this construction, along with the
other components of our Jastrow factor, by applying our method to a test system: the quasi-2D
electron gas. This will also provide a demonstration of the process involved in creating the
wavefunction.

5. The quasi-2D electron gas

The quasi-2D electron gas consists of a gas of electrons moving in the potential provided by a
fixed background of positive charge. The background charge density is uniform, with infinite
extent in the xy-plane but finite extent in the z-direction. The number of electrons per unit
area (in the xy-plane) is determined by the requirement that the system be charge neutral,
and therefore depends on the density of the background charge and on the slab width. Our
simulation cell will consist of a square of side L in the xy-plane, with infinite extent in the
z-direction.

Usually, the electrons are allowed to spill into the vacuum region, outside the fixed
background; this system is conventionally referred to as the jellium slab. It is also possible
to confine the system further, by imposing infinite potential barriers at the slab edges: this is
known as the infinite barrier model. We will test both systems here.

5.1. Plasmon modes

The first task is to determine the plasmon normal modes. We choose our coordinate system so
that the upper and lower surfaces of the slab are at z = 0 and s; for the purpose of calculating
the normal modes, we will assume that the electron density (and hence the plasma frequency)
is constant inside the slab and zero outside. Applying this assumption to the normal mode
equation (21) shows that outside the slab the normal modes are solutions of Laplace’s equation:

∇2φi = 0 (z < 0, z > s) (45)

2 The term ‘homogeneous’ here refers to the fact that u only depends on the relative spin and separation of the
electrons, and not on their individual positions, as is appropriate in a system of uniform electron density.
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while inside the slab, we have(
ω2

i − ω2
p

)
∇2φi = 0 (0 < z < s). (46)

From now on, we will use ωp to denote the constant plasma frequency within the slab.
The boundary conditions at z = 0 and s can be obtained in the standard way [12]. We

integrate the normal mode equation (21) over an infinitesimal Gaussian pillbox straddling
the boundary to show that εr∂φ/∂z must be continuous at the interface, where the relative
permittivity is

εr =



1 outside the slab

1 − ω2
p

ω2
inside the slab.

(47)

Integrating the irrotational function ∇φ around an infinitesimal Stokesian loop (again straddling
the boundary) shows that ∂φ/∂x and ∂φ/∂y are also continuous. We will impose the additional
requirement that the electric field must tend to zero far from the slab.

Since our system is periodic in the xy-plane, we look for solutions with xy-dependence of
the form cos(k‖ · r‖) or sin(k‖ · r‖). In the former case, the field outside the slab is

φk‖ ∝ cos(k‖ · r‖)
{

ek‖z for z < 0
e−k‖(z−s) for z > s.

(48)

A second solution is obtained by replacing cos(k‖ · r‖) with sin(k‖ · r‖).
We are now able to identify a special case: when ω = ωp. The permittivity of the slab

becomes zero; the continuity of εr∂φ/∂z at the interfaces, combined with form of the generic
solution (48), then means that there is no field outside the slab. The remaining interfacial
boundary conditions imply that φ must tend to zero at z = 0 and s, but is otherwise unrestricted
within the slab:

φ
1(b)
k =




2

k
√

L2s
cos(k‖ · r‖) sin kzz for 0 < z < s

0 otherwise
(49)

φ
2(b)
k =




2

k
√

L2s
sin(k‖ · r‖) sin kzz for 0 < z < s

0 otherwise.
(50)

The functions are normalized in accordance with our earlier prescription (22). These
oscillations, contained entirely within the slab, are called bulk plasmons.

Away from the plasma frequency, the potential within the slab must also be a solution of
Laplace’s equation. Applying the boundary conditions then gives

φ
1(s)±
k‖ (r) =

(
1 ∓ e−k‖s

2L2k‖

)1/2

cos(k‖ · r‖)




ek‖z for z < 0
ek‖z ∓ e−k‖(z−s)

1 ∓ ek‖s
for 0 < z < s

∓e−k‖(z−s) otherwise

(51)

φ
2(s)±
k‖ (r) =

(
1 ∓ e−k‖s

2L2k‖

)1/2

sin(k‖ · r‖)




ek‖z for z < 0
ek‖z ∓ e−k‖(z−s)

1 ∓ ek‖s
for 0 < z < s

∓e−k‖(z−s) otherwise.

(52)

These are the surface plasmons; the field is most intense at the interfaces, and decays
exponentially away from there. There are now four modes for each k‖; the ‘plus’ and ‘minus’
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ω
/ω
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k/kp

Electrostatic surface plasmon dispersion relation for a thin slab
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1

Figure 1. The dispersion relation for surface plasmons in the electrostatic theory. The slab width
is 20 au. For metallic densities, the Fermi wavevector is of order unity, whereas kp ∼ 0.01. The
plasmon frequency very rapidly reaches the large-k limit of ωp/

√
2; this is the result obtained for a

semi-infinite system.

modes are antisymmetric and symmetric solutions, corresponding to the two branches of the
dispersion relation

ω

ωp
=
√

1 ± e−ks

2
(53)

which was first obtained by Ritchie [13] and is plotted in figure 1. The analysis of surface
plasmons in the electrostatic limit was first presented by Ferrell [14]; a more complete
treatment, going beyond the electrostatic limit and including quantum mechanical effects, is
contained in the work by Boardman [15].

The wavevectors k‖ and kz are subject to several restrictions:

• each k‖ is a reciprocal lattice vector of the simulation cell;

• if k‖ is included in the set, then −k‖ is not;

• kz = nπ/s, where n is a positive integer;

• the magnitude is limited—|k| < kc;

• when k‖ = 0, there are no surface plasmon modes (which would not be normalizable) and
no bulk plasmon modes of type 2 (which would be zero everywhere).

For the cut-off wavevector kc, we use the result (38) for the homogeneous electron gas. One
could argue that a lower cut-off ought to be used for the surface plasmon modes, for which
ω ≈ ωp/

√
2 when k‖ is large; however, the cut-off is only expected to be correct to within an

order of magnitude, and we use the same value for both sets of plasmons.
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5.2. The plasmon Jastrow factor

Having identified the normal modes, we can apply the prescriptions (35) and (36) to construct
the Jastrow factor. The resulting two-body term is

upl(r, r′) = e2

h̄ωpε0 L2s

∑
k‖

cos
[
k‖ · (r‖ − r′

‖)
] [

Fk‖ (z, z′)

+
∑

kz

4

k2
sin kzz sin kzz′�(z)�(s − z)�(z′)�(s − z′)

]
. (54)

The function Fk‖ is defined in appendix A.
Since the density depends only on z, terms with k‖ 	= 0 do not contribute to the one-

body term, and surface plasmon modes are excluded. Assuming once again that the density is
constant within the slab and zero outside gives

χpl(r) = e2

h̄ωpε0

∑
kz

4n0

k3
z s

sin kzz(1 − cos kzs)�(z)�(s − z). (55)

5.3. Approximate analytic solution for a single surface

It is possible to obtain an approximation to upl by taking the slab width s and the cell size L to
infinity, in which case the sums become integrals. The system is no longer a slab but a single
surface (at z = 0) of infinite extent in the xy-plane. If we also neglect the cut-off kc, then we
can solve the integrals analytically; in this limit, the full plasmon two-body function is

u∞
pl (r, r′) = e2

4πε0h̄ωp

[
�(z)�(z′)

(
1

|r − r′| − 1√
(z + z ′)2 + (�r‖)2

)

+
√

2√
(|z| + |z ′|)2 + (�r‖)2

]
. (56)

The contribution from the bulk plasmons is only relevant when both electrons are inside the
electron gas; when the electrons are deep inside, u∞

pl tends to the expected homogeneous
electron gas form (37). The correlation is boosted for electrons closer to the boundary.

The singularity at r = r′ is a result of neglecting the cut-off kc; it does not appear in the
original expressions relevant to a finite slab and cell. In any case, the plasmon theory is not
expected to predict electron–electron correlation accurately at short range.

5.4. Cusps: desirable and undesirable

The electronic wavefunction should have a cusp when two electrons lie on top of each
other [10]. We impose this condition by introducing ucusp and χcusp, as indicated in
equations (41), (42) and (44). This procedure depends on the unmodified wavefunction being
smooth: more precisely, it must be possible to expand this function in a Taylor series about the
point ri = r j , irrespective of the positions of the other electrons. Unfortunately, this is not true
for the plasmon wavefunction: the problem is that both the bulk and surface plasmon modes
have cusps at the slab edges. The functions upl and χpl therefore also contain cusps. This is not
a problem in the infinite barrier model, because the electrons are then strictly confined within
the slab, but it is a problem in the jellium slab.

In fact, the cusps in the plasmon wavefunction create a more serious problem in QMC.
These extended gradient discontinuities lead to singularities in the Laplacian which should
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Figure 2. Removing the unphysical slab-edge cusps from upl (main graph) and χpl (inset) at the
slab boundaries. In the plots of upl, one electron is fixed while the other is scanned along a line in
the z-direction; the x- and y-coordinates are chosen to be the same, so that �r‖ = 0. The smoothed
and unsmoothed curves are almost indistinguishable when the electrons are far from the slab edges;
the most pronounced difference appears when one electron is just inside the slab edge. These and
the following plots were calculated for a cell containing 600 electrons, with s = 17.642 48 and
rs = 2.07 (in Hartree atomic units).

make a finite contribution to the energy expectation value (unlike the point singularities
associated with the electron–electron cusps). However, because these points (which constitute
a region of zero volume) are never sampled in a QMC simulation, their contribution is missed,
and any expectation values involving the Laplacian will not be accurate.

Therefore, in order to achieve proper sampling in QMC, and also to implement the
electron–electron cusp conditions correctly, it is necessary to smooth out the plasmon
wavefunction: both upl and χpl must be modified to have continuous first and second
derivatives.

A simple and appealing method of removing the cusps is to modify the piecewise
definitions of upl and χpl, blurring the boundaries between different regions. The smoothing
method which we applied is described in appendix B.

Figure 2 illustrates the effect of removing the undesirable cusps from χpl and upl; some
detail is lost when the electrons are close to the slab edges. The complete two-body correlation
term, including both upl and ucusp, is shown in figure 3.

The purpose of the two-body terms is to incorporate correlations into the wavefunction:
principally to keep electrons apart. However, a secondary effect (in non-homogeneous systems)
is to alter the electron density. In the case of the slab, using only a two-body term forces
electrons away from the centre, towards the slab edges; the density spreads out more. This
is undesirable, because the initial two-determinant wavefunction usually gives an accurate
estimate of the density. The effect of upl on the electron density is counterbalanced by χpl;
to counterbalance the effect of including ucusp, we must also include the one-body term χcusp.
We use the prescription (44) to calculate χcusp. Assuming that the density is constant within
the slab, we can perform the integration analytically, as shown in appendix C. The resulting
one-body term is plotted in figure 4; the relative size of the correction is small (∼1% of χpl in
the centre of the slab). Fortunately, the correction is cuspless.
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Figure 3. The smoothed plasmon two-body function, to which the correct electron–electron cusps
have been added.
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Figure 4. The one-body term χcusp, for various values of the cut-off distance Lc. As Lc becomes
large, the curves tend to a limit, because the decay of ucusp is then dominated by kc rather than Lc.

6. Results

In order to test the plasmon-derived Jastrow factor for the quasi-2D electron gas, we carried
out variational Monte Carlo (VMC) simulations for both the jellium slab and the infinite
barrier model. For both systems, a cell containing 600 electrons was used, with the slab width
s = 17.642 48 and density parameter rs = 2.07 (using Hartree atomic units). At this electron
density (which corresponds to aluminium), the plasma frequency is ωp ≈ 0.6 and the plasmon
reciprocal-space cut-off is kc ≈ 0.7.
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Using 600 electrons means that the length of side of the cell is L = 35.5464; in this
relatively large cell the long-range plasmon correlations should be important, whereas in a
small cell with L ∼ k−1

c the short-range behaviour would be expected to dominate. In addition,
it means that Lc = 5.5, so that Lc � k−1

c and the short-range function ucusp is allowed to
decay naturally. As a further check, we also carried out simulations for an even larger system
containing 1600 electrons.

The orbitals used to construct the determinant were obtained from LDA calculations. In
addition to the VMC energies, it is instructive to compare the electron density profiles generated
by the different Jastrow factors:

n(z) =
∫

�

|�(r1, . . . , rN )|2
N∑

i=1

δ(z − zi ) d3r1 · · · d3rN . (57)

During the VMC simulation, we periodically sample the z-positions of the electrons. These
coordinates are taken from the distribution with probability density function n(z)/N . To see
this, consider P(a < z1 < b) (the probability that the first electron lies in a given z-range):

P(a < z1 < b) =
∫ b

z1=a

(∫
�

|�(r1, . . . , rN )|2 dx1 dy1 d3r2 · · · d3rN

)
dz1

=
∫ b

z=a

n(z)

N
dz. (58)

We then reconstruct n(z)/N from the set of sampled points {zi}.

6.1. Jellium slab results

In all the density profile plots which follow, we show the LDA profile for reference. This is
indistinguishable from the VMC profile when no Jastrow factor is included (as it should be).

First, we investigate the effect of introducing only the homogeneous short-ranged two-
body term ucusp. As predicted, the electron density spreads out, coming closer to the
homogeneous system; this can be seen in figure 5. However, the effect is small.

The change in electron density brought about by using the plasmon two-body term is much
more dramatic, and is illustrated in figure 6. The long-range correlations cause the electron
density to be pushed almost entirely into bands outside the original slab. In these regions, upl

is much weaker than in the centre.
The function of the one-body term is to restore the correct electron density. Remarkably,

given the dramatic separation observed in figure 6, this is achieved by χpl; figure 7 shows the
density profile for the wavefunction including the full Jastrow exponent (41).

An important test for the plasmonic wavefunction is to compare it with a wavefunction
containing only the short-range electron–electron cusp terms, ucusp and χcusp. The density is
plotted in figure 8, from which it is evident that the original LDA density is almost exactly
recovered, except for a small increase in the density very close to the surface. This is an
indication that the expression (C.10) for χcusp, which was not rigorously derived but constructed
based on a plausibility argument, works very well for this system.

The results for a larger system of 1600 electrons are almost identical to those for the 600-
electron system; table 1 shows the effect of the different Jastrow factors on the VMC energy
for the two sizes. The lowest energy is obtained when only the short-ranged part of the Jastrow
exponent is used. This is because, in this case, the electron density profile is very close to the
(presumably optimal) original LDA profile. The short range of the two-body term means that
it disrupts the density less, and there is consequently less work for the one-body function to do.
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Figure 5. The effect on the electron density of including the homogeneous two-body term ucusp in
the Jastrow exponent. The density becomes slightly more homogeneous, with more electrons being
pushed into the vacuum regions outside the slab.
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Figure 6. The electron density profile when the plasmon two-body term upl is included in the VMC
wavefunction. The profile is completely different to the original curve, with almost all the electrons
now at the slab edges. The change is much more pronounced than when the homogeneous (and
short-ranged) ucusp alone is used.

In contrast, the plasmon two-body function is very long ranged, and has an enormous
impact on the electron density (as seen in figure 6); the plasmon one-body function is
correspondingly large. Although this function comes close to restoring the original density,
it is not perfect: this may be due to the way in which the functions have been smoothed, or the
fact that the Jastrow factor was derived for an idealized slab of constant density.

These results suggest that having the correct electron density is more important than having
the exact two-electron correlation. Up to this point, no optimization has been carried out:
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Figure 7. The density profile when the full plasmon Jastrow factor is included in the VMC
wavefunction. The result is very close to the original density, although not perfect.
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Figure 8. The electron density profile for a Jastrow exponent consisting of only the short-range
two-body function ucusp and the corresponding one-body term χcusp.

all parameters have been calculated in advance, based only on theoretical considerations. To
improve the plasmon Jastrow factor, a reasonable approach is to take that predicted by (41) as
a starting point, and then to add a small one-body term with adjustable parameters.

6.2. Infinite barrier model results

Although the plasmon Jastrow factor for the unbounded slab performed well, and should
provide a good starting point for optimization, the unoptimized form did not improve on the
simple short-ranged Jastrow factor, which came closer to maintaining the LDA density and
hence generated a lower energy.
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Figure 9. Electron density profile for the bounded slab, with a Jastrow exponent containing only the
short-ranged two-body term. The disturbance to the density is small; this is reflected in the VMC
energy, which is significantly lower than when using no Jastrow factor.

Table 1. The energy per electron, calculated in VMC, for the unbounded jellium slab. Results
for two different cell sizes and various forms of Jastrow exponent are shown. The function us

pl is
the smoothed version of upl. The ‘full plasmon Jastrow’ refers to a Jastrow exponent of the type
described in (41); the ‘short-ranged Jastrow’ uses only ucusp and χcusp.

Energy per electron
Number of electrons in cell Jastrow exponent used (mHartree)

600 None 32.5 ± 0.2
ucusp 12.5 ± 0.1
us

pl + ucusp 3361 ± 3

Short-ranged Jastrow 6.14 ± 0.07
Full plasmon Jastrow 7.95 ± 0.06

1600 None 32.9 ± 0.2
Short-ranged Jastrow 4.8 ± 0.2
Full plasmon Jastrow 8.4 ± 0.4

The bounded jellium slab is in some ways a more accurate representation of the system for
which the plasmon normal modes were derived; electrons are truly confined to the slab, as in
the original model. In the bounded jellium slab, it is not necessary to smooth out the cusps at the
slab edges, because the determinantal part of the wavefunction already goes to zero here. The
smoothing is presumably one of the areas which contribute to the small but significant errors in
the Jastrow factor for the unbounded slab; the fact that it is not required for the bounded slab
suggests that the results for the plasmon Jastrow factor should be better here.

Figures 9–12 illustrate the electron density profiles for the various different versions of
Jastrow factor; the corresponding energies are recorded in table 2.

The effect of including only the short-range two-body term (figure 9) is to reduce the
energy and move the electron density away from the centre of the slab; as in the unbounded
slab, the change in the electron density is small.
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Figure 10. Electron density profile for the bounded slab, with the plasmon two-body term only.
The long-ranged correlations alter the density drastically, as in the unbounded slab; electrons are
pushed to the slab edges.

n(
z)

LDA
full plasmon Jastrow

0

0.02

0.04

0.06

0.08

z
0 s

Figure 11. Electron density profile for the bounded slab, with the full plasmon Jastrow factor. The
density is very close to the LDA form, and the energy is lower than when using only the short-ranged
Jastrow.

Even with the electrons confined to the slab, the plasmon two-body term completely
changes the electron density when used without the corresponding one-body function; this
is illustrated in figure 10. When the one-body function is applied, the density is very close to
the LDA result, as can be seen in figure 11. The correction is better here than in the unbounded
slab. Consequently, the energy is lower than that achieved with the full short-ranged Jastrow
exponent; the density for the full short-range Jastrow factor, shown in figure 12, is as good as
that for the plasmon Jastrow factor, but the energy is higher.
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Figure 12. Electron density profile for the bounded slab, with the full short-ranged Jastrow
exponent. The LDA density is almost restored, and the energy is lower than when using only
ucusp, though not as low as that obtained with the full plasmon Jastrow exponent.

Table 2. The VMC energy per electron for the bounded jellium slab.

Number of electrons in cell Jastrow exponent used Energy per electron (mHartree)

600 None 85.9 ± 0.4
ucusp 62.2 ± 0.3
us

pl + ucusp 8870 ± 70

Short-ranged Jastrow 58.8 ± 0.2
Full plasmon Jastrow 55.1 ± 0.1

1600 None 87.9 ± 1.2
Short-ranged Jastrow 60.1 ± 0.9
Full plasmon Jastrow 53.3 ± 0.8

7. Conclusions

We have presented an alternative approach to the connection between plasmons and the ground-
state wavefunctions of many-electron systems. Our approach reproduces the results of earlier
studies [1, 5] while emphasizing the role of the plasmon normal modes; if the normal modes
can be obtained, then the wavefunction can be written down immediately.

The plasmon theory is consistent with a wavefunction of the Slater–Jastrow form; the
plasmon-derived terms make up part of the Jastrow factor (the part dealing with long-range
correlations between electrons). The theory generates both the two-electron correlation
function upl and the single-electron density-correcting function χpl; the relationship between
these two functions (43) follows the general rule proposed by Malatesta et al [6].

We have tested this relationship further, by applying it to our short-range correlation
function; we derived χcusp from ucusp using this formula. The purpose of χcusp is to counteract
the density-altering effect of ucusp, and our results show that this objective is achieved almost
perfectly. We therefore strongly recommend the use of relationship (43) as a means of
analytically generating the one-body term without the need for optimization; any fine-tuning
can be carried out later, starting from a function which is already close to the ideal form.
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The plasmon-derived Jastrow factor was successful in reducing the expectation value of
the energy beyond the level achieved by the short-range terms alone for the bounded slab,
but not for the unbounded one. The bounded slab is perhaps closer to the model system for
which the normal modes were derived; more importantly, however, the troublesome gradient
discontinuities are not present in the plasmon Jastrow factor for this system because the
electrons are kept strictly inside the slab, and the wavefunction does not need to be smoothed.
In the unbounded jellium slab, the plasmon one- and two-body terms are no longer perfectly
matched; the long-range correlations alter the electron density in a way that is not completely
compensated for by χ s

pl. This disturbance to the density means that the energy expectation value
actually increases slightly when the plasmon terms are included. In contrast, the plasmon-
derived one-body term does a much better job of correcting the electron density in the bounded
slab system, and the result is that the expectation value of the energy is reduced.

A better wavefunction could be obtained by including an additional one-body function
in the Jastrow exponent, which should be optimized with the aim of lowering the energy or
variance, while retaining the long-range plasmon-derived correlations. However, the plasmon
terms are computationally costly, and it may be more practical to use only the short-range
correlation function, together with the associated one-body term. These can be calculated
quickly, and greatly reduce the need for optimizing parameters.

Appendix A. Definition of Fk‖

The contribution of the surface plasmon modes to upl is obtained by substituting the fields (51)
and (52) and the dispersion relation (53) into the prescription (36) for the two-body term. The
result is

usurf(r, r′) = e2

h̄ωpε0 L2s

∑
k‖

cos
[
k‖ · (r‖ − r′

‖)
]

Fk‖ (z, z′). (A.1)

The function Fk‖ is defined piecewise in table A.1. The constants used in this definition are

Ak‖ = s
√

2

2k‖
√

1 + e−k‖s

Bk‖ = s
√

2

2k‖
√

1 − e−k‖s

Ck‖ = 1 − ek‖s

Dk‖ = 1 + ek‖s .

(A.2)

Table A.1. The function Fk‖ (z, z ′). This contains all the z- and z ′-dependence of the part of upl

arising from the surface plasmon contribution. The constants Ak‖ , Bk‖ , Ck‖ and Dk‖ are defined in
equation (A.2).

z z ′ Fk‖ (z, z ′)

<0 <0 ek‖(z+z′−s)(−Ak‖ Ck‖ + Bk‖ Dk‖ )

<0 0 → s ek‖(z+z′−s)(−Ak‖ + Bk‖ ) + ek‖(z−z′)(Ak‖ + Bk‖ )

<0 >s ek‖(z−z′)(Ak‖ Ck‖ + Bk‖ Dk‖ )
0 → s 0 → s 2 cosh[k‖(z + z ′ − s)](−Ak‖ /Ck‖ + Bk‖/Dk‖ )

+ 2 cosh
[
k‖(z − z ′)

]
(Ak‖ /Ck‖ + Bk‖/Dk‖ )

0 → s >s ek‖(s−z−z′) [−Ak‖ + Bk‖
]+ ek‖(z−z′) [Ak‖ + Bk‖

]
>s >s ek‖(s−z−z′)(−Ak‖ Ck‖ + Bk‖ Dk‖ )
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Appendix B. Smoothing the plasmon wavefunction

The piecewise construction of the plasmon wavefunction for the slab system leads to gradient
discontinuities at the slab edges. Here, we describe our method for removing these cusps.

For the purpose of illustration, consider an arbitrary function f (x) with the following form
near the point x = x0:

f (x) = f1(x)�(x − x0) + f2(x)�(x0 − x). (B.1)

A smooth approximation to f is

f s(x) = f1(x)T (x − x0) + f2(x)T (x0 − x) (B.2)

where the smoothing function T has the following properties:

• the value and first and second derivatives are continuous;
• lim

x→∞ T (x) = 1;

• T (x) + T (−x) = 1.

This ensures that as long as f is continuous, the original value of f on the boundary is
preserved. A function with these characteristics is

T (x) = 1 − tanh kcx

2
. (B.3)

This function has a transition region of size ∼k−1
c , which is the shortest length-scale available

for plasmons with a cut-off of kc in reciprocal space. We therefore replace the Heaviside
functions in the definitions of upl and χpl with T and obtain a wavefunction with continuous
second derivatives.

Appendix C. Calculating χcusp

The formula for the one-body term χcusp is

χcusp(r) = 1
2

∫
�

[
ucusp(r ↑, r′ ↑) + ucusp(r ↑, r′ ↓)

]
n̄(z′) d3r ′ (C.1)

=
(

mee2

4πε0h̄2

)
3

8kc

∫
�

n̄(z ′)e−kc|r−r′|−(r−r′)2/L2
c d3r ′. (C.2)

The integral in (C.1) is over the cell. However, the factor of e−(r−r′)2/L2
c in ucusp is designed to

ensure that ucusp becomes zero well before |r−r′| approaches the size of the cell. Conveniently,
this means that the integral may equally well be evaluated over the entire xy-plane. Switching
to cylindrical polar coordinates gives

I =
∫

�

n̄(z′)e−kc|r−r′ |−(r−r′)2/L2
c d3r ′

= 2π

∫ ∞

z′=−∞

∫ ∞

ρ′=0
n̄(z ′) exp

(
−kc

√
ρ ′2 + (z − z ′)2 − ρ ′2 + (z − z′)2

L2
c

)
ρ ′ dρ ′ dz′.

(C.3)

There is no dependence on x and y. A change of variables gives

I = 2π L2
cek2

c L2
c/4
∫ ∞

z′=−∞

∫ ∞

p=|z−z′ |/Lc+kc Lc/2
n̄(z ′)

(
p − kcLc

2

)
e−p2

dp dz ′, (C.4)
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and hence

χcusp(r) =
(

mee2

4πε0h̄2

)
3π L2

c

8kc
ek2

c L2
c/4
∫ ∞

z=−∞
n̄(z ′)


exp


−

[∣∣z − z′∣∣
Lc

+ kcLc

2

]2



− kcLc
√

π

2
erfc

(∣∣z − z′∣∣
Lc

+ kcLc

2

)
 dz′. (C.5)

This is a general formula which applies when the electron density is a function of z only. If we
make the approximation (once again) that n̄ is constant within the slab, we then obtain

χcusp(r) =
(

mee2

4πε0h̄2

)
3

16
n0 L4

cπ
√

πek2
c L2

c/4

{
−
(

z

Lc
+ kcLc

2
+ 1

kcLc

)
erfc

(
z

Lc
+ kcLc

2

)

−
(

s − z

Lc
+ kcLc

2
+ 1

kcLc

)
erfc

(
s − z

Lc
+ kcLc

2

)
(C.6)

+
(

z − a(z)

Lc
+ kcLc

2
+ 1

kcLc

)
erfc

(
z − a(z)

Lc
+ kcLc

2

)
(C.7)

+
(

a(z) − z

Lc
+ kcLc

2
+ 1

kcLc

)
erfc

(
a(z) − z

Lc
+ kcLc

2

)
(C.8)

+ 1√
π

e−(z/Lc+kc Lc/2)2 + 1√
π

e−[(s−z)/Lc+kc Lc/2]2
(C.9)

− 1√
π

e−([z−a(z)]/Lc+kc Lc/2)2 − 1√
π

e−([a(z)−z]/Lc+kc Lc/2)2

}
(C.10)

where

a(z) =




0 when z < 0

z when 0 < z < s

s otherwise.

(C.11)
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